پرش به محتویات

نود ایمپدینگ‌های Google Gemini#

از نود ایمپدینگ‌های Google Gemini برای تولید امپدینگ‌ها برای یک متن مشخص استفاده کنید.

در این صفحه، پارامترهای نود برای نود ایمپدینگ‌های Google Gemini و لینک‌هایی به منابع بیشتر را خواهید یافت.

اطلاعات احراز هویت

می‌توانید اطلاعات احراز هویت مربوط به این نود را این‌جا پیدا کنید.

مقدار پارامتر در زیرنودها

زیرنودها هنگام پردازش چند آیتم با استفاده از یک عبارت، رفتار متفاوتی نسبت به سایر نودها دارند.

اکثر نودها، از جمله نودهای ریشه، هر تعداد آیتم را به عنوان ورودی می‌پذیرند، این آیتم‌ها را پردازش کرده و نتایج را خروجی می‌دهند. شما می‌توانید از عبارات برای ارجاع به آیتم‌های ورودی استفاده کنید، و نود هر بار این عبارت را برای هر آیتم حل می‌کند. برای مثال، اگر ورودی شامل پنج مقدار name باشد، عبارت {{ $json.name }} به ترتیب به هر نام حل می‌شود.

در زیرنودها، این عبارت همیشه به اولین آیتم ارجاع می‌دهد. برای مثال، اگر ورودی شامل پنج مقدار name باشد، عبارت {{ $json.name }} همیشه به اولین نام ارجاع می‌دهد.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
## پارامترهای نود

* **مدل**: مدل مورد نظر برای تولید ایمپدینگ را انتخاب کنید.

برای اطلاعات بیشتر درباره مدل‌های موجود، به [مستندات مدل‌های Google Gemini](https://ai.google.dev/models/gemini){:target=_blank .external-link} مراجعه کنید.

## قالب‌ها و نمونه‌ها

<!-- see https://www.notion.so/n8n/Pull-in-templates-for-the-integrations-pages-37c716837b804d30a33b47475f6e3780 -->
<span class="n8n-templates-widget-more"><a href="https://n98n.ir/integrations/embeddings-google-gemini/" target="_blank">Browse Embeddings Google Gemini integration templates</a>, or <a href="https://n98n.ir/workflows/" target="_blank">search all templates</a></span>

## منابع مرتبط

برای اطلاعات بیشتر در مورد مستندات ایمپدینگ‌های Google Generative AI در Langchain، به [مستندات Langchain for Google Generative AI embeddings](https://js.langchain.com/integrations/text_embedding/google_generativeai){:target=_blank .external-link} مراجعه کنید.


مشاهده مستندسازی [هوش مصنوعی پیشرفته] n98n در این قسمت.

واژگان مورد استفاده در هوش مصنوعی#

  • کامل‌شدن: پاسخ‌هایی هستند که توسط مدلی مانند GPT تولید می‌شوند.
  • توهمات: توهم در هوش مصنوعی هنگامی است که یک مدل زبانی بزرگ (LLM) نادرست تصور می‌کند الگوها یا اشیائی وجود دارند که واقعاً وجود ندارند.
  • پایگاه داده وکتور: پایگاه داده وکتور نمایه‌های ریاضی اطلاعات را ذخیره می‌کند. از آن در کنار جاسازی‌ها و بازیاب‌ها برای ساختن یک پایگاه داده که هوش مصنوعی شما می‌تواند هنگام پاسخگویی به سوالات به آن مراجعه کند، استفاده می‌شود.
  • مخزن وکتور: مخزن وکتور، یا پایگاه داده وکتور، نمایه‌های ریاضی اطلاعات را ذخیره می‌کند. از آن در کنار جاسازی‌ها و بازیاب‌ها برای ساختن یک پایگاه داده که هوش مصنوعی شما می‌تواند هنگام پاسخگویی به سوالات به آن مراجعه کند، استفاده می‌شود.