پرش به محتویات

مستندات نود تقسیم‌کننده متن کاراکتر#

از نود تقسیم‌کننده متن کاراکتر برای تقسیم داده‌های سند بر اساس کاراکترها استفاده کنید.

در این صفحه، پارامترهای نود برای نود تقسیم‌کننده متن کاراکتر و لینک‌های منابع بیشتر را خواهید یافت.

مقدار پارامتر در زیرنودها

زیرنودها هنگام پردازش چند آیتم با استفاده از یک عبارت، رفتار متفاوتی نسبت به سایر نودها دارند.

اکثر نودها، از جمله نودهای ریشه، هر تعداد آیتم را به عنوان ورودی می‌پذیرند، این آیتم‌ها را پردازش کرده و نتایج را خروجی می‌دهند. شما می‌توانید از عبارات برای ارجاع به آیتم‌های ورودی استفاده کنید، و نود هر بار این عبارت را برای هر آیتم حل می‌کند. برای مثال، اگر ورودی شامل پنج مقدار name باشد، عبارت {{ $json.name }} به ترتیب به هر نام حل می‌شود.

در زیرنودها، این عبارت همیشه به اولین آیتم ارجاع می‌دهد. برای مثال، اگر ورودی شامل پنج مقدار name باشد، عبارت {{ $json.name }} همیشه به اولین نام ارجاع می‌دهد.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
## پارامترهای نود

* **جداکننده**: جداکننده مورد استفاده برای تقسیم سند به آیتم‌های جداگانه را انتخاب کنید.
* **اندازه تکه**: تعداد کاراکترهای هر تکه را وارد کنید.
* **همپوشانی تکه**: میزان همپوشانی بین تکه‌ها را وارد کنید.

## قالب‌ها و نمونه‌ها

<!-- see https://www.notion.so/n8n/Pull-in-templates-for-the-integrations-pages-37c716837b804d30a33b47475f6e3780 -->
<span class="n8n-templates-widget-more"><a href="https://n98n.ir/integrations/character-text-splitter/" target="_blank">Browse Character Text Splitter integration templates</a>, or <a href="https://n98n.ir/workflows/" target="_blank">search all templates</a></span>

## منابع مرتبط

برای اطلاعات بیشتر درباره سرویس، به [مستندسازی جداکننده متن LangChain](https://js.langchain.com/docs/concepts/text_splitters){:target=_blank .external-link} و [مستندسازی API LangChain برای تقسیم متن کاراکتر](https://v03.api.js.langchain.com/classes/langchain.text_splitter.CharacterTextSplitter.html){:target=_blank .external-link} مراجعه کنید.


مشاهده مستندسازی [هوش مصنوعی پیشرفته] n98n در این قسمت.

واژگان مورد استفاده در هوش مصنوعی#

  • کامل‌شدن: پاسخ‌هایی هستند که توسط مدلی مانند GPT تولید می‌شوند.
  • توهمات: توهم در هوش مصنوعی هنگامی است که یک مدل زبانی بزرگ (LLM) نادرست تصور می‌کند الگوها یا اشیائی وجود دارند که واقعاً وجود ندارند.
  • پایگاه داده وکتور: پایگاه داده وکتور نمایه‌های ریاضی اطلاعات را ذخیره می‌کند. از آن در کنار جاسازی‌ها و بازیاب‌ها برای ساختن یک پایگاه داده که هوش مصنوعی شما می‌تواند هنگام پاسخگویی به سوالات به آن مراجعه کند، استفاده می‌شود.
  • مخزن وکتور: مخزن وکتور، یا پایگاه داده وکتور، نمایه‌های ریاضی اطلاعات را ذخیره می‌کند. از آن در کنار جاسازی‌ها و بازیاب‌ها برای ساختن یک پایگاه داده که هوش مصنوعی شما می‌تواند هنگام پاسخگویی به سوالات به آن مراجعه کند، استفاده می‌شود.