پرش به محتویات

نود مدل Cohere#

از نود مدل Cohere برای استفاده از مدل‌های Cohere بهره ببرید.

در این صفحه، پارامترهای نود مدل Cohere و لینک‌های منابع بیشتر را مشاهده خواهید کرد.

این نود از پشتیبانی ابزارها برخوردار نیست، بنابراین با نود عامل هوش مصنوعی کار نمی‌کند. در عوض، آن را به نود رشته LLM پایه متصل کنید.

اعتبارنامه‌

می‌توانید اطلاعات احراز هویت این نود را اینجا پیدا کنید.

مقدار پارامتر در زیرنودها

زیرنودها هنگام پردازش چند آیتم با استفاده از یک عبارت، رفتار متفاوتی نسبت به سایر نودها دارند.

اکثر نودها، از جمله نودهای ریشه، هر تعداد آیتم را به عنوان ورودی می‌پذیرند، این آیتم‌ها را پردازش کرده و نتایج را خروجی می‌دهند. شما می‌توانید از عبارات برای ارجاع به آیتم‌های ورودی استفاده کنید، و نود هر بار این عبارت را برای هر آیتم حل می‌کند. برای مثال، اگر ورودی شامل پنج مقدار name باشد، عبارت {{ $json.name }} به ترتیب به هر نام حل می‌شود.

در زیرنودها، این عبارت همیشه به اولین آیتم ارجاع می‌دهد. برای مثال، اگر ورودی شامل پنج مقدار name باشد، عبارت {{ $json.name }} همیشه به اولین نام ارجاع می‌دهد.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
## گزینه‌های نود

* **حداکثر تعداد توکن‌ها**: حداکثر تعداد توکن‌هایی که استفاده می‌شود را وارد کنید که طول تکمیل را تنظیم می‌کند.
* **دمای نمونه‌برداری**: از این گزینه برای کنترل تصادفی بودن فرآیند نمونه‌برداری استفاده کنید. دمای بالاتر نمونه‌برداری متنوع‌تری ایجاد می‌کند، اما خطر توهم زدن را افزایش می‌دهد.

## قالب‌ها و نمونه‌ها

<!-- see https://www.notion.so/n8n/Pull-in-templates-for-the-integrations-pages-37c716837b804d30a33b47475f6e3780 -->
<span class="n8n-templates-widget-more"><a href="https://n98n.ir/integrations/cohere-model/" target="_blank">Browse Cohere Model integration templates</a>, or <a href="https://n98n.ir/workflows/" target="_blank">search all templates</a></span>

## منابع مرتبط

برای اطلاعات بیشتر درباره سرویس، به [مستندات Cohere در LangChains](https://js.langchain.com/integrations/llms/cohere/){:target=_blank .external-link} مراجعه کنید.


مشاهده مستندسازی [هوش مصنوعی پیشرفته] n98n در این قسمت.

واژگان مورد استفاده در هوش مصنوعی#

  • کامل‌شدن: پاسخ‌هایی هستند که توسط مدلی مانند GPT تولید می‌شوند.
  • توهمات: توهم در هوش مصنوعی هنگامی است که یک مدل زبانی بزرگ (LLM) نادرست تصور می‌کند الگوها یا اشیائی وجود دارند که واقعاً وجود ندارند.
  • پایگاه داده وکتور: پایگاه داده وکتور نمایه‌های ریاضی اطلاعات را ذخیره می‌کند. از آن در کنار جاسازی‌ها و بازیاب‌ها برای ساختن یک پایگاه داده که هوش مصنوعی شما می‌تواند هنگام پاسخگویی به سوالات به آن مراجعه کند، استفاده می‌شود.
  • مخزن وکتور: مخزن وکتور، یا پایگاه داده وکتور، نمایه‌های ریاضی اطلاعات را ذخیره می‌کند. از آن در کنار جاسازی‌ها و بازیاب‌ها برای ساختن یک پایگاه داده که هوش مصنوعی شما می‌تواند هنگام پاسخگویی به سوالات به آن مراجعه کند، استفاده می‌شود.